16 research outputs found

    Exploring Quantum Neural Networks for the Discovery and Implementation of Quantum Error-Correcting Codes

    Full text link
    We investigate the use of Quantum Neural Networks for discovering and implementing quantum error-correcting codes. Our research showcases the efficacy of Quantum Neural Networks through the successful implementation of the Bit-Flip quantum error-correcting code using a Quantum Autoencoder, effectively correcting bit-flip errors in arbitrary logical qubit states. Additionally, we employ Quantum Neural Networks to restore states impacted by Amplitude Damping by utilizing an approximative 4-qubit error-correcting codeword. Our models required modification to the initially proposed Quantum Neural Network structure to avoid barren plateaus of the cost function and improve training time. Moreover, we propose a strategy that leverages Quantum Neural Networks to discover new encryption protocols tailored for specific quantum channels. This is exemplified by learning to generate logical qubits explicitly for the bit-flip channel. Our modified Quantum Neural Networks consistently outperformed the standard implementations across all tasks

    T-wave Inversion through Inhomogeneous Voltage Diffusion within the FK3V Cardiac Model

    Full text link
    The heart beats due to the synchronized contraction of cardiomyocytes triggered by a periodic sequence of electrical signals called action potentials, which originate in the sinoatrial node and spread through the heart's electrical system. A large body of work is devoted to modeling the propagation of the action potential and to reproducing reliably its shape and duration. Connection of computational modeling of cells to macroscopic phenomenological curves such as the electrocardiogram has been also intense, due to its clinical importancce in analyzing cardiovascular diseases. In this work we simulate the dynamics of action potential propagation using the three-variable Fenton-Karma model that can account for both normal and damaged cells through spatially inhomogeneous voltage diffusion coefficient. We monitor the action potential propagation in the cardiac tissue and calculate the pseudo-electrocardiogram that reproduces the R and T waves. The R wave amplitude varies according to a double exponential law as a function of the (spatially homogeneous, for an isotropic tissue) diffusion coefficient. The addition of spatial inhomogeneity in the diffusion coefficient by means of a defected region representing damaged cardiac cells, may result in T-wave inversion in the calculated pseudo-electrocardiogram. The transition from positive to negative polarity of the T-wave is analyzed as a function of the length and the depth of the defected region.Comment: 12 pages, figures, 39 reference

    High laser induced damage threshold photoresists for nano-imprint and 3D multi-photon lithography

    Get PDF
    Optics manufacturing technology is predicted to play a major role in the future production of integrated photonic circuits. One of the major drawbacks in the realization of photonic circuits is the damage of optical materials by intense laser pulses. Here, we report on the preparation of a series of organic-inorganic hybrid photoresists that exhibit enhanced laser-induced damage threshold. These photoresists showed to be candidates for the fabrication of micro-optical elements (MOEs) using three-dimensional multiphoton lithography. Moreover, they demonstrate pattern ability by nanoimprint lithography, making them suitable for future mass production of MOEs

    Synthesis and application of triphenylamine-based aldehydes as photo-initiators for multi-photon lithography

    No full text
    International audiencePhotopolymerization of (meth)acrylate-based formulations has become a widespread method for industry due to the high energy efficiency and low curing times of this technology. Various products from simple coatings to more complex applications such as additive manufacturing technologies are based on this versatile method. Common industrial radical photoinitiators are generally based on aromatic ketones. Benzaldehyde is an organic compound consisting of a benzene ring with a formyl substituent. It is the simplest aromatic aldehyde and one of the most industrially useful; for instance in the preparation of various aniline dyes, perfumes, flavorings, and pharmaceutics. Parallel to this, triphenylamines are extensively used for the design of dyes used for solar energy conversion. In this work, three triphenylamine derivatives bearing formyl groups are as a new substance class of multi-photon lithography photoinitiators. Besides their efficient formulations, they show high biocompatibilty by investigating the adhesion, viability and proliferation of dental stem cells on photopolymerized thin films
    corecore